A biomarker is a measurable indicator of a biological condition. Usually it is seen as a substance or a molecule introduced in the body but even physiological indicators may function as dynamic biomarkers for certain diseases. Dr. Sejdić and his team at the IMED Lab work on finding innovative ways to measure such biomarkers. During the ISP seminar last week, he presented his work on using low-cost devices with simple electronics such as accelerometers and microphones, to capture the unique patterns of physiological variables. It turns out that by analyzing these patterns, one can differentiate between healthy and pathological conditions. Building these devices requires an interdisciplinary investigation and insights from signal processing, biomedical engineering and also machine learning.
Listening to the talk, I felt that Dr. Sejdić is a researcher who is truly an engineer at heart as he described his work on building an Asperometer. It is a device that is placed on the throat of a patient to find out when they have swallowing difficulties (Dysphagia). The device picks up the vibrations from the throat and does a bit of signal processing magic to identify problematic scenarios. Do you remember the little flap called the Epiglotis that guards the entrance to your wind pipe, from your high school Biology? Well, that thing is responsible for directing the food into the oesophagus (food pipe) while eating and preventing it from going into wrong places (like the lungs!). As it moves to cover the wind pipe, it records a characteristic motion pattern on the accelerometer. The Asperometer can then distinguish between regular and irregular patterns to find out when should we be concerned. The current gold standard to do these assessments involve using some ‘Barium food’ and X-Rays to visualize its movement. As you may have realized, the Asperometer is not only unobstrusive but also appears to be a safer method to do so. There are a couple of issues left to iron out though, such as removing sources of noise in the signal due to speech or even breathing through the mouth. We can, however, still use it in controlled usage scenarios in the presence of a specialist.
The remaining part of the talk briefly dealt with Dr. Sejdić’s investigations of gait, handwriting processes and preference detection, again with the help of signal processing and some simple electronics on the body. He is building on work in biomedical engineering to study age and disease related changes in our bodies. The goal is to explore simple instruments providing useful information that can ultimately help to prevent, retard or reverse such diseases.