Towards Making Kivy Apps Accessible

After last week‘s discussion with tshirtman about making making Kivy apps more accessible, I spent this week exploring the accessibility options on the devices I own. The idea was to investigate and plan a set of common features that we could implement for Kivy.

I ended up playing with all the settings I that could find under the accessibility menus on an Android phone and a Macbook. I will soon repeat this exercise with an iPhone as well.

In comparison to my Galaxy running Android 4.4.2, these features were easier to use and more responsive to interact with on my Mac 10.9. Even the tutorials were simpler to follow and avoided statements like:

“When this feature is on, the response time could be slowed down in Phone, Calculator and other apps.”

I will keep my rantings aside for now and would instead like to focus on how we could support these features within Kivy apps. Following Apple’s way of organizing these features, you can group accessibility features into three broad categories:

Here's TalkBack on Android reading out my PIN to me!
TalkBack on Android reading out my PIN to me!
  • Seeing: This includes display settings such as colors and contrast, making text larger and zooming the screen. A lot of these settings come free of cost to the app developers. However, an important feature in this category includes the screen reader app (Example: VoiceOver and TalkBack). This is the main area of interest to us as the onus of making this feature work correctly rests with us and the app developers. I will get back to this after we finish classifying the features.
  • Hearing: We must make sure all our alert widgets in Kivy are accompanied by visual cues (such as a screen flash) along with audio indicators. Another feature that might be of interest to us would be to ensure that we provide a subtitles option along in our video player widget.
  • Interacting: It includes features like the assistant menu on Android to provide easy access to a limited number of commonly accessed functions. Most of these features are again managed and controlled by the operating systems themselves. Apart from a few design choices to make sure that app doesn’t interfere with their functions, there’s nothing that the app developers have to do to support them.

So the most important missing piece in the Kivy framework is to provide support to the screen-reading apps. These apps are designed to provide spoken feedback to what the users select (touch or point) and activate. For example if I hover over a menu-item or select a button on the screen, the app must describe what it is and also say what is does, if possible.

While settings such as zoom, larger font-sizes etc. are already taken care of by the frameworks that Kivy builds upon, we must provide explicit support for the screen readers. Here’s an example of an hello world kivy app and how it is seen by the screen-readers. There is nothing apart from the main windows buttons, i.e. “Close”, “Minimize” and “Zoom” that is available to the VoiceOver program to describe:

There is no meta information available to the screen-readers to describe the interface to the user.

The main challenge here is that none of the Kivy widgets are selectable at this point. Not only that makes it difficult to use them with screen-readers but it is also not possible to navigate them using a keyboard. We must provide a screen-reader support along with our feature on providing focus support for Kivy widgets.

Along with on_focus we must send a descriptive feedback that the screen-readers as a description about the widget. While most of the native OS UI elements have such content descriptors already defined, our kivy widgets lack such information. We must make an effort to make sure that common widgets such as text-inputs, select options etc. have a description consistent with the one natively provided by the platform.

So a major portion of this implementation must be dealt within Kivy itself. While we have previously adopted an approach for implementing the lowest common set of features in other Plyer facades, it would be a good idea to implement the content descriptors (or accessibility attributes) in a way that it covers all our target platforms. Plyer could then take on from there to make the the platform specific calls to support the native screen reading apps. We would need to provide a mechanism to transform these attributes into a form relevant on these platforms separately. We could safely ignore the extra set of attributes at this point.

In this post I have only outlined the first steps that we need to take for making Kivy apps more accessible. I will work on figuring out the finer details about implementing them in the coming weeks. Hopefully this would help in triggering off a meaningful discussion within the community and we can have a chance to listen to other opinions on this as well.

 

This is a two part post. You can continue reading on the topic here — Towards Making Kivy Apps Accessible – 2.

One thought on “Towards Making Kivy Apps Accessible”

  1. It’s being an interesting fact by seeing everyday a new app is being launched in the Android platform. Many are free and many are chargeable.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.